jueves, 23 de abril de 2009

Definiciones sobre Presión

El concepto de presión
Cuando se ejerce una fuerza sobre un cuerpo deformable, los efectos que provoca dependen no sólo de su intensidad, sino también de cómo esté repartida sobre la superficie del cuerpo. Así, un golpe de martillo sobre un clavo bien afilado hace que penetre mas en la pared de lo que lo haría otro clavo sin punta que recibiera el mismo impacto. Un individuo situado de puntillas sobre una capa de nieve blanda se hunde, en tanto que otro de igual peso que calce raquetas, al repartir la fuerza sobre una mayor superficie, puede caminar sin dificultad. El cociente entre la intensidad F de la fuerza aplicada perpendicularmente sobre una superficie dada y el área S de dicha superficie se denomina presión:
p = F/S
La presión representa la intensidad de la fuerza que se ejerce sobre cada unidad de área de la superficie considerada. Cuanto mayor sea la fuerza que actúa sobre una superficie dada, mayor será la presión, y cuanto menor sea la superficie para una fuerza dada, mayor será entonces la presión resultante.
La presión en los fluidos
El concepto de presión es muy general y por ello puede emplearse siempre que exista una fuerza actuando sobre una superficie. Sin embargo, su empleo resulta especialmente útil cuando el cuerpo o sistema sobre el que se ejercen las fuerzas es deformable. Los fluidos no tienen forma propia y constituyen el principal ejemplo de aquellos casos en los que es más adecuado utilizar el concepto de presión que el de fuerza.
Cuando un fluido está contenido en un recipiente, ejerce una fuerza sobre sus paredes y, por tanto, puede hablarse también de presión. Si el fluido está en equilibrio las fuerzas sobre las paredes son perpendiculares a cada porción de superficie del recipiente, ya que de no serlo existirían componentes paralelas que provocarían el desplazamiento de la masa de fluido en contra de la hipótesis de equilibrio. La orientación de la superficie determina la dirección de la fuerza de presión, por lo que el cociente de ambas, que es precisamente la presión, resulta independiente de la dirección; se trata entonces de una magnitud escalar.
Unidades de presión
En el SI la unidad de presión es el pascal, se representa por Pa y se define como la presión correspondiente a una fuerza de un newton de intensidad actuando perpendicularmente sobre una superficie plana de un metro cuadrado. 1 Pa equivale, por tanto, a 1 N/m ².
Existen, no obstante, otras unidades de presión que sin corresponder a ningún sistema de unidades en particular han sido consagradas por el uso y se siguen usando en la actualidad junto con el pascal. Entre ellas se encuentran la atmósfera y el bar.
La atmósfera (atmósfera) se define como la presión que a 0 °C ejercería el peso de una columna de mercurio de 76 cm de altura y 1 cm ² de sección sobre su base. Es posible calcular su equivalencia en N/m ² sabiendo que la densidad del mercurio es igual a 13,6.10³ kg/m ³ y recurriendo a las siguientes relaciones entre magnitudes:
Peso (N) = masa (kg).9,8 m/s ²
Masa = volumen.densidad
Presión = Fuerza / Superficie
Como el volumen del cilindro que forma la columna es igual a la superficie de la base por la altura, se tendrá:
Presión = 1 atmósfera = masa.9,8 m/s ²/superficie = superficie.(0,76 m.13,6.10³ kg/m ³.9,8 m/s ²)/superficie
es decir: 1 atmósfera = 1,013.105 Pa.
El bar es realmente un múltiple del pascal y equivale a 105 N/m ². En meteorología se emplea con frecuencia el milibar (mb) o milésima parte del bar 1 mb = 10 ² Pa y 1 atmósfera = 1.013 mb
LA HIDROSTATICA
La ecuación fundamental de la hidrostática
Todos los líquidos pesan, por ello cuando están contenidos en un recipiente las capas superiores oprimen a las inferiores, generándose una presión debida al peso. La presión en un punto determinado del líquido deberá depender entonces de la altura de la columna de líquido que tenga por encima suyo. Considérese un punto cualquiera del líquido que diste una altura h de la superficie libre de dicho líquido. La fuerza del peso debido a una columna cilíndrica de líquido de base S situada sobre él puede expresarse en la forma
F peso = mg = V.g = g.h.S
siendo V el volumen de la columna y δ la densidad del líquido, la presión debida al peso vendrá dada por:
p peso = F/A = g.h.S/S = h.δ.g
La presión en un punto
La definición de la presión como cociente entre la fuerza y la superficie se refiere a una fuerza constante que actúa perpendicularmente sobre una superficie plana. En los líquidos en equilibrio las fuerzas asociadas a la presión son en cada punto perpendiculares a la superficie del recipiente, de ahí que la presión sea considerada como una magnitud escalar cociente de dos magnitudes vectoriales de igual dirección: la fuerza y el vector superficie. Dicho vector tiene por módulo el área y por dirección la perpendicular a la superficie.
Cuando la fuerza no es constante, sino que varía de un punto a otro de la superficie S considerada, tiene sentido hablar de la presión en un punto dado. Si la fuerza es variable y F representa la resultante de todas las fuerzas que actúan sobre la superficie S la fórmula
p = F/S
define, en este caso, la presión media. Si sobre la superficie libre se ejerciera una presión exterior adicional po,como la atmosférica por ejemplo, la presión total p en el punto de altura h sería:
p = p0 + p peso = p0 + h.δ.g
Esta ecuación puede generalizarse al caso de que se trate de calcular la diferencia de presiones Δ p entre dos puntos cualesquiera del interior del líquido situados a diferentes alturas,resultando:
δ p = δ.g.δ h
es decir:
p2 - p1 = δ.g.(h2 - h1)
que constituye la llamada ecuación fundamental de la hidrostática. Esta ecuación indica que para un líquido dado y para una presión exterior constante la presión en el interior depende únicamente de la altura. Por tanto, todos los puntos del líquido que se encuentren al mismo nivel soportan igual presión. Ello implica que ni la forma de un recipiente ni la cantidad de líquido que contiene influyen en la presión que se ejerce sobre su fondo, tan sólo la altura de líquido. Esto es lo que se conoce como paradoja hidrostática, cuya explicación se deduce a modo de consecuencia de la ecuación fundamental.
El principio de Pascal y sus aplicaciones
La presión aplicada en un punto de un líquido contenido en un recipiente se transmite con el mismo valor a cada una de las partes del mismo. Este enunciado, obtenido a partir de observaciones y experimentos por el físico y matemático francés Blaise Pascal (1623-1662), se conoce como principio de Pascal.
El principio de Pascal puede ser interpretado como una consecuencia de la ecuación fundamental de la hidrostática y del carácter incompresible de los líquidos. En esta clase de fluidos la densidad es constante, de modo que de acuerdo con la ecuación p = p0 + ρ . g.h si se aumenta la presión en la superficie libre, por ejemplo, la presión en el fondo ha de aumentar en la misma medida, ya que ρ . g.h no varía al no hacerlo h.
La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un dispositivo que permite entender mejor su significado.
Consiste, en esencia, en dos cilindros de diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido que puede ser agua o aceite. Dos émbolos de secciones diferentes se ajustan, respectivamente, en cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en contacto con él se transmite íntegramente y de forma instantánea a todo el resto del líquido; por tanto, será igual a la presión p2 que ejerce el líquido sobre el émbolo de mayor sección S2, es decir:
p1 = p2  F1/S1 = F2/S2  F1 = F2.S1/S2
Si la sección S2 es veinte veces mayor que la S1, la fuerza F1 aplicada sobre el émbolo pequeño se ve multiplicada por veinte en el émbolo grande. La prensa hidráulica es una máquina simple semejante a la palanca de Arquímedes, que permite amplificar la intensidad de las fuerzas y constituye el fundamento de elevadores, prensas, frenos y muchos otros dispositivos hidráulicos de maquinaria industrial.

No hay comentarios:

Publicar un comentario